Рассчитать высоту треугольника со сторонами 150, 121 и 37
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 121 + 37}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-150)(154-121)(154-37)}}{121}\normalsize = 25.4908832}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-150)(154-121)(154-37)}}{150}\normalsize = 20.5626457}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-150)(154-121)(154-37)}}{37}\normalsize = 83.3620773}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 121 и 37 равна 25.4908832
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 121 и 37 равна 20.5626457
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 121 и 37 равна 83.3620773
Ссылка на результат
?n1=150&n2=121&n3=37
Найти высоту треугольника со сторонами 147, 147 и 57
Найти высоту треугольника со сторонами 145, 138 и 84
Найти высоту треугольника со сторонами 127, 115 и 61
Найти высоту треугольника со сторонами 146, 118 и 114
Найти высоту треугольника со сторонами 98, 96 и 66
Найти высоту треугольника со сторонами 145, 117 и 31
Найти высоту треугольника со сторонами 145, 138 и 84
Найти высоту треугольника со сторонами 127, 115 и 61
Найти высоту треугольника со сторонами 146, 118 и 114
Найти высоту треугольника со сторонами 98, 96 и 66
Найти высоту треугольника со сторонами 145, 117 и 31