Рассчитать высоту треугольника со сторонами 150, 126 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 126 + 51}{2}} \normalsize = 163.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163.5(163.5-150)(163.5-126)(163.5-51)}}{126}\normalsize = 48.4369857}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163.5(163.5-150)(163.5-126)(163.5-51)}}{150}\normalsize = 40.687068}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163.5(163.5-150)(163.5-126)(163.5-51)}}{51}\normalsize = 119.667847}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 126 и 51 равна 48.4369857
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 126 и 51 равна 40.687068
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 126 и 51 равна 119.667847
Ссылка на результат
?n1=150&n2=126&n3=51
Найти высоту треугольника со сторонами 84, 71 и 30
Найти высоту треугольника со сторонами 100, 96 и 21
Найти высоту треугольника со сторонами 129, 99 и 80
Найти высоту треугольника со сторонами 139, 112 и 48
Найти высоту треугольника со сторонами 92, 78 и 15
Найти высоту треугольника со сторонами 75, 75 и 73
Найти высоту треугольника со сторонами 100, 96 и 21
Найти высоту треугольника со сторонами 129, 99 и 80
Найти высоту треугольника со сторонами 139, 112 и 48
Найти высоту треугольника со сторонами 92, 78 и 15
Найти высоту треугольника со сторонами 75, 75 и 73