Рассчитать высоту треугольника со сторонами 150, 127 и 62

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 127 + 62}{2}} \normalsize = 169.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{169.5(169.5-150)(169.5-127)(169.5-62)}}{127}\normalsize = 61.1965767}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{169.5(169.5-150)(169.5-127)(169.5-62)}}{150}\normalsize = 51.8131016}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{169.5(169.5-150)(169.5-127)(169.5-62)}}{62}\normalsize = 125.354278}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 127 и 62 равна 61.1965767
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 127 и 62 равна 51.8131016
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 127 и 62 равна 125.354278
Ссылка на результат
?n1=150&n2=127&n3=62