Рассчитать высоту треугольника со сторонами 150, 130 и 31
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 130 + 31}{2}} \normalsize = 155.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{155.5(155.5-150)(155.5-130)(155.5-31)}}{130}\normalsize = 25.350583}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{155.5(155.5-150)(155.5-130)(155.5-31)}}{150}\normalsize = 21.9705052}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{155.5(155.5-150)(155.5-130)(155.5-31)}}{31}\normalsize = 106.308896}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 130 и 31 равна 25.350583
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 130 и 31 равна 21.9705052
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 130 и 31 равна 106.308896
Ссылка на результат
?n1=150&n2=130&n3=31
Найти высоту треугольника со сторонами 91, 49 и 45
Найти высоту треугольника со сторонами 95, 83 и 61
Найти высоту треугольника со сторонами 67, 65 и 61
Найти высоту треугольника со сторонами 82, 80 и 41
Найти высоту треугольника со сторонами 76, 46 и 40
Найти высоту треугольника со сторонами 138, 123 и 114
Найти высоту треугольника со сторонами 95, 83 и 61
Найти высоту треугольника со сторонами 67, 65 и 61
Найти высоту треугольника со сторонами 82, 80 и 41
Найти высоту треугольника со сторонами 76, 46 и 40
Найти высоту треугольника со сторонами 138, 123 и 114