Рассчитать высоту треугольника со сторонами 150, 136 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 136 + 18}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-150)(152-136)(152-18)}}{136}\normalsize = 11.8724478}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-150)(152-136)(152-18)}}{150}\normalsize = 10.7643527}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-150)(152-136)(152-18)}}{18}\normalsize = 89.7029391}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 136 и 18 равна 11.8724478
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 136 и 18 равна 10.7643527
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 136 и 18 равна 89.7029391
Ссылка на результат
?n1=150&n2=136&n3=18
Найти высоту треугольника со сторонами 118, 117 и 18
Найти высоту треугольника со сторонами 126, 120 и 92
Найти высоту треугольника со сторонами 106, 94 и 38
Найти высоту треугольника со сторонами 136, 86 и 68
Найти высоту треугольника со сторонами 142, 113 и 81
Найти высоту треугольника со сторонами 124, 111 и 54
Найти высоту треугольника со сторонами 126, 120 и 92
Найти высоту треугольника со сторонами 106, 94 и 38
Найти высоту треугольника со сторонами 136, 86 и 68
Найти высоту треугольника со сторонами 142, 113 и 81
Найти высоту треугольника со сторонами 124, 111 и 54