Рассчитать высоту треугольника со сторонами 150, 141 и 128
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 141 + 128}{2}} \normalsize = 209.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{209.5(209.5-150)(209.5-141)(209.5-128)}}{141}\normalsize = 118.32744}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{209.5(209.5-150)(209.5-141)(209.5-128)}}{150}\normalsize = 111.227794}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{209.5(209.5-150)(209.5-141)(209.5-128)}}{128}\normalsize = 130.345071}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 141 и 128 равна 118.32744
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 141 и 128 равна 111.227794
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 141 и 128 равна 130.345071
Ссылка на результат
?n1=150&n2=141&n3=128
Найти высоту треугольника со сторонами 142, 108 и 42
Найти высоту треугольника со сторонами 121, 121 и 17
Найти высоту треугольника со сторонами 139, 109 и 44
Найти высоту треугольника со сторонами 93, 87 и 64
Найти высоту треугольника со сторонами 118, 82 и 45
Найти высоту треугольника со сторонами 106, 101 и 54
Найти высоту треугольника со сторонами 121, 121 и 17
Найти высоту треугольника со сторонами 139, 109 и 44
Найти высоту треугольника со сторонами 93, 87 и 64
Найти высоту треугольника со сторонами 118, 82 и 45
Найти высоту треугольника со сторонами 106, 101 и 54