Рассчитать высоту треугольника со сторонами 150, 141 и 99
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 141 + 99}{2}} \normalsize = 195}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{195(195-150)(195-141)(195-99)}}{141}\normalsize = 95.6680544}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{195(195-150)(195-141)(195-99)}}{150}\normalsize = 89.9279712}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{195(195-150)(195-141)(195-99)}}{99}\normalsize = 136.254502}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 141 и 99 равна 95.6680544
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 141 и 99 равна 89.9279712
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 141 и 99 равна 136.254502
Ссылка на результат
?n1=150&n2=141&n3=99
Найти высоту треугольника со сторонами 90, 86 и 62
Найти высоту треугольника со сторонами 129, 106 и 65
Найти высоту треугольника со сторонами 105, 78 и 58
Найти высоту треугольника со сторонами 126, 93 и 66
Найти высоту треугольника со сторонами 72, 70 и 31
Найти высоту треугольника со сторонами 91, 76 и 56
Найти высоту треугольника со сторонами 129, 106 и 65
Найти высоту треугольника со сторонами 105, 78 и 58
Найти высоту треугольника со сторонами 126, 93 и 66
Найти высоту треугольника со сторонами 72, 70 и 31
Найти высоту треугольника со сторонами 91, 76 и 56