Рассчитать высоту треугольника со сторонами 150, 142 и 134
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 142 + 134}{2}} \normalsize = 213}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{213(213-150)(213-142)(213-134)}}{142}\normalsize = 122.192471}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{213(213-150)(213-142)(213-134)}}{150}\normalsize = 115.675539}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{213(213-150)(213-142)(213-134)}}{134}\normalsize = 129.487544}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 142 и 134 равна 122.192471
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 142 и 134 равна 115.675539
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 142 и 134 равна 129.487544
Ссылка на результат
?n1=150&n2=142&n3=134
Найти высоту треугольника со сторонами 97, 80 и 46
Найти высоту треугольника со сторонами 144, 103 и 43
Найти высоту треугольника со сторонами 130, 128 и 64
Найти высоту треугольника со сторонами 88, 65 и 64
Найти высоту треугольника со сторонами 95, 84 и 79
Найти высоту треугольника со сторонами 110, 94 и 44
Найти высоту треугольника со сторонами 144, 103 и 43
Найти высоту треугольника со сторонами 130, 128 и 64
Найти высоту треугольника со сторонами 88, 65 и 64
Найти высоту треугольника со сторонами 95, 84 и 79
Найти высоту треугольника со сторонами 110, 94 и 44