Рассчитать высоту треугольника со сторонами 150, 144 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 144 + 21}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-150)(157.5-144)(157.5-21)}}{144}\normalsize = 20.4913997}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-150)(157.5-144)(157.5-21)}}{150}\normalsize = 19.6717437}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-150)(157.5-144)(157.5-21)}}{21}\normalsize = 140.512455}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 144 и 21 равна 20.4913997
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 144 и 21 равна 19.6717437
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 144 и 21 равна 140.512455
Ссылка на результат
?n1=150&n2=144&n3=21
Найти высоту треугольника со сторонами 132, 111 и 85
Найти высоту треугольника со сторонами 106, 93 и 27
Найти высоту треугольника со сторонами 80, 71 и 12
Найти высоту треугольника со сторонами 70, 57 и 22
Найти высоту треугольника со сторонами 127, 88 и 51
Найти высоту треугольника со сторонами 93, 59 и 38
Найти высоту треугольника со сторонами 106, 93 и 27
Найти высоту треугольника со сторонами 80, 71 и 12
Найти высоту треугольника со сторонами 70, 57 и 22
Найти высоту треугольника со сторонами 127, 88 и 51
Найти высоту треугольника со сторонами 93, 59 и 38