Рассчитать высоту треугольника со сторонами 150, 144 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 144 + 55}{2}} \normalsize = 174.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{174.5(174.5-150)(174.5-144)(174.5-55)}}{144}\normalsize = 54.825441}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{174.5(174.5-150)(174.5-144)(174.5-55)}}{150}\normalsize = 52.6324234}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{174.5(174.5-150)(174.5-144)(174.5-55)}}{55}\normalsize = 143.542973}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 144 и 55 равна 54.825441
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 144 и 55 равна 52.6324234
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 144 и 55 равна 143.542973
Ссылка на результат
?n1=150&n2=144&n3=55
Найти высоту треугольника со сторонами 113, 84 и 32
Найти высоту треугольника со сторонами 128, 81 и 55
Найти высоту треугольника со сторонами 104, 95 и 65
Найти высоту треугольника со сторонами 100, 82 и 71
Найти высоту треугольника со сторонами 126, 112 и 35
Найти высоту треугольника со сторонами 132, 129 и 55
Найти высоту треугольника со сторонами 128, 81 и 55
Найти высоту треугольника со сторонами 104, 95 и 65
Найти высоту треугольника со сторонами 100, 82 и 71
Найти высоту треугольника со сторонами 126, 112 и 35
Найти высоту треугольника со сторонами 132, 129 и 55