Рассчитать высоту треугольника со сторонами 150, 149 и 27
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 149 + 27}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-150)(163-149)(163-27)}}{149}\normalsize = 26.9614148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-150)(163-149)(163-27)}}{150}\normalsize = 26.781672}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-150)(163-149)(163-27)}}{27}\normalsize = 148.787067}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 149 и 27 равна 26.9614148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 149 и 27 равна 26.781672
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 149 и 27 равна 148.787067
Ссылка на результат
?n1=150&n2=149&n3=27
Найти высоту треугольника со сторонами 139, 115 и 74
Найти высоту треугольника со сторонами 52, 50 и 28
Найти высоту треугольника со сторонами 117, 114 и 94
Найти высоту треугольника со сторонами 93, 78 и 27
Найти высоту треугольника со сторонами 115, 113 и 37
Найти высоту треугольника со сторонами 66, 63 и 33
Найти высоту треугольника со сторонами 52, 50 и 28
Найти высоту треугольника со сторонами 117, 114 и 94
Найти высоту треугольника со сторонами 93, 78 и 27
Найти высоту треугольника со сторонами 115, 113 и 37
Найти высоту треугольника со сторонами 66, 63 и 33