Рассчитать высоту треугольника со сторонами 150, 99 и 55
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 99 + 55}{2}} \normalsize = 152}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152(152-150)(152-99)(152-55)}}{99}\normalsize = 25.2554665}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152(152-150)(152-99)(152-55)}}{150}\normalsize = 16.6686079}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152(152-150)(152-99)(152-55)}}{55}\normalsize = 45.4598397}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 99 и 55 равна 25.2554665
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 99 и 55 равна 16.6686079
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 99 и 55 равна 45.4598397
Ссылка на результат
?n1=150&n2=99&n3=55
Найти высоту треугольника со сторонами 136, 132 и 31
Найти высоту треугольника со сторонами 146, 118 и 75
Найти высоту треугольника со сторонами 143, 140 и 44
Найти высоту треугольника со сторонами 89, 65 и 32
Найти высоту треугольника со сторонами 94, 71 и 50
Найти высоту треугольника со сторонами 133, 115 и 104
Найти высоту треугольника со сторонами 146, 118 и 75
Найти высоту треугольника со сторонами 143, 140 и 44
Найти высоту треугольника со сторонами 89, 65 и 32
Найти высоту треугольника со сторонами 94, 71 и 50
Найти высоту треугольника со сторонами 133, 115 и 104