Рассчитать высоту треугольника со сторонами 150, 99 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{150 + 99 + 88}{2}} \normalsize = 168.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{168.5(168.5-150)(168.5-99)(168.5-88)}}{99}\normalsize = 84.3666802}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{168.5(168.5-150)(168.5-99)(168.5-88)}}{150}\normalsize = 55.682009}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{168.5(168.5-150)(168.5-99)(168.5-88)}}{88}\normalsize = 94.9125153}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 150, 99 и 88 равна 84.3666802
Высота треугольника опущенная с вершины A на сторону BC со сторонами 150, 99 и 88 равна 55.682009
Высота треугольника опущенная с вершины C на сторону AB со сторонами 150, 99 и 88 равна 94.9125153
Ссылка на результат
?n1=150&n2=99&n3=88
Найти высоту треугольника со сторонами 145, 98 и 80
Найти высоту треугольника со сторонами 111, 94 и 51
Найти высоту треугольника со сторонами 122, 114 и 103
Найти высоту треугольника со сторонами 134, 117 и 114
Найти высоту треугольника со сторонами 50, 40 и 35
Найти высоту треугольника со сторонами 72, 69 и 4
Найти высоту треугольника со сторонами 111, 94 и 51
Найти высоту треугольника со сторонами 122, 114 и 103
Найти высоту треугольника со сторонами 134, 117 и 114
Найти высоту треугольника со сторонами 50, 40 и 35
Найти высоту треугольника со сторонами 72, 69 и 4