Рассчитать высоту треугольника со сторонами 18, 13 и 11
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{18 + 13 + 11}{2}} \normalsize = 21}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{21(21-18)(21-13)(21-11)}}{13}\normalsize = 10.9219934}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{21(21-18)(21-13)(21-11)}}{18}\normalsize = 7.88810638}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{21(21-18)(21-13)(21-11)}}{11}\normalsize = 12.9078104}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 18, 13 и 11 равна 10.9219934
Высота треугольника опущенная с вершины A на сторону BC со сторонами 18, 13 и 11 равна 7.88810638
Высота треугольника опущенная с вершины C на сторону AB со сторонами 18, 13 и 11 равна 12.9078104
Ссылка на результат
?n1=18&n2=13&n3=11
Найти высоту треугольника со сторонами 150, 124 и 50
Найти высоту треугольника со сторонами 75, 68 и 63
Найти высоту треугольника со сторонами 93, 80 и 41
Найти высоту треугольника со сторонами 102, 97 и 80
Найти высоту треугольника со сторонами 148, 142 и 137
Найти высоту треугольника со сторонами 141, 100 и 77
Найти высоту треугольника со сторонами 75, 68 и 63
Найти высоту треугольника со сторонами 93, 80 и 41
Найти высоту треугольника со сторонами 102, 97 и 80
Найти высоту треугольника со сторонами 148, 142 и 137
Найти высоту треугольника со сторонами 141, 100 и 77