Рассчитать высоту треугольника со сторонами 21, 21 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{21 + 21 + 8}{2}} \normalsize = 25}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{25(25-21)(25-21)(25-8)}}{21}\normalsize = 7.85353452}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{25(25-21)(25-21)(25-8)}}{21}\normalsize = 7.85353452}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{25(25-21)(25-21)(25-8)}}{8}\normalsize = 20.6155281}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 21, 21 и 8 равна 7.85353452
Высота треугольника опущенная с вершины A на сторону BC со сторонами 21, 21 и 8 равна 7.85353452
Высота треугольника опущенная с вершины C на сторону AB со сторонами 21, 21 и 8 равна 20.6155281
Ссылка на результат
?n1=21&n2=21&n3=8
Найти высоту треугольника со сторонами 126, 105 и 105
Найти высоту треугольника со сторонами 141, 132 и 64
Найти высоту треугольника со сторонами 150, 145 и 133
Найти высоту треугольника со сторонами 110, 100 и 91
Найти высоту треугольника со сторонами 47, 37 и 23
Найти высоту треугольника со сторонами 117, 100 и 94
Найти высоту треугольника со сторонами 141, 132 и 64
Найти высоту треугольника со сторонами 150, 145 и 133
Найти высоту треугольника со сторонами 110, 100 и 91
Найти высоту треугольника со сторонами 47, 37 и 23
Найти высоту треугольника со сторонами 117, 100 и 94