Рассчитать высоту треугольника со сторонами 22, 18 и 6
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{22 + 18 + 6}{2}} \normalsize = 23}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{23(23-22)(23-18)(23-6)}}{18}\normalsize = 4.91282022}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{23(23-22)(23-18)(23-6)}}{22}\normalsize = 4.01958018}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{23(23-22)(23-18)(23-6)}}{6}\normalsize = 14.7384606}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 22, 18 и 6 равна 4.91282022
Высота треугольника опущенная с вершины A на сторону BC со сторонами 22, 18 и 6 равна 4.01958018
Высота треугольника опущенная с вершины C на сторону AB со сторонами 22, 18 и 6 равна 14.7384606
Ссылка на результат
?n1=22&n2=18&n3=6
Найти высоту треугольника со сторонами 147, 109 и 101
Найти высоту треугольника со сторонами 107, 97 и 79
Найти высоту треугольника со сторонами 146, 130 и 28
Найти высоту треугольника со сторонами 107, 91 и 30
Найти высоту треугольника со сторонами 130, 114 и 76
Найти высоту треугольника со сторонами 147, 144 и 73
Найти высоту треугольника со сторонами 107, 97 и 79
Найти высоту треугольника со сторонами 146, 130 и 28
Найти высоту треугольника со сторонами 107, 91 и 30
Найти высоту треугольника со сторонами 130, 114 и 76
Найти высоту треугольника со сторонами 147, 144 и 73