Рассчитать высоту треугольника со сторонами 81, 72 и 18
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{81 + 72 + 18}{2}} \normalsize = 85.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{85.5(85.5-81)(85.5-72)(85.5-18)}}{72}\normalsize = 16.4477155}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{85.5(85.5-81)(85.5-72)(85.5-18)}}{81}\normalsize = 14.6201915}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{85.5(85.5-81)(85.5-72)(85.5-18)}}{18}\normalsize = 65.7908618}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 81, 72 и 18 равна 16.4477155
Высота треугольника опущенная с вершины A на сторону BC со сторонами 81, 72 и 18 равна 14.6201915
Высота треугольника опущенная с вершины C на сторону AB со сторонами 81, 72 и 18 равна 65.7908618
Ссылка на результат
?n1=81&n2=72&n3=18
Найти высоту треугольника со сторонами 138, 137 и 41
Найти высоту треугольника со сторонами 130, 75 и 74
Найти высоту треугольника со сторонами 86, 53 и 48
Найти высоту треугольника со сторонами 141, 139 и 50
Найти высоту треугольника со сторонами 140, 133 и 22
Найти высоту треугольника со сторонами 144, 88 и 75
Найти высоту треугольника со сторонами 130, 75 и 74
Найти высоту треугольника со сторонами 86, 53 и 48
Найти высоту треугольника со сторонами 141, 139 и 50
Найти высоту треугольника со сторонами 140, 133 и 22
Найти высоту треугольника со сторонами 144, 88 и 75