Рассчитать высоту треугольника со сторонами 25, 24 и 17
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{25 + 24 + 17}{2}} \normalsize = 33}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{33(33-25)(33-24)(33-17)}}{24}\normalsize = 16.2480768}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{33(33-25)(33-24)(33-17)}}{25}\normalsize = 15.5981537}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{33(33-25)(33-24)(33-17)}}{17}\normalsize = 22.9384614}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 25, 24 и 17 равна 16.2480768
Высота треугольника опущенная с вершины A на сторону BC со сторонами 25, 24 и 17 равна 15.5981537
Высота треугольника опущенная с вершины C на сторону AB со сторонами 25, 24 и 17 равна 22.9384614
Ссылка на результат
?n1=25&n2=24&n3=17
Найти высоту треугольника со сторонами 92, 55 и 45
Найти высоту треугольника со сторонами 113, 105 и 89
Найти высоту треугольника со сторонами 142, 102 и 61
Найти высоту треугольника со сторонами 126, 69 и 68
Найти высоту треугольника со сторонами 36, 34 и 22
Найти высоту треугольника со сторонами 148, 126 и 80
Найти высоту треугольника со сторонами 113, 105 и 89
Найти высоту треугольника со сторонами 142, 102 и 61
Найти высоту треугольника со сторонами 126, 69 и 68
Найти высоту треугольника со сторонами 36, 34 и 22
Найти высоту треугольника со сторонами 148, 126 и 80