Рассчитать высоту треугольника со сторонами 26, 15 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{26 + 15 + 13}{2}} \normalsize = 27}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{27(27-26)(27-15)(27-13)}}{15}\normalsize = 8.97997773}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{27(27-26)(27-15)(27-13)}}{26}\normalsize = 5.18075638}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{27(27-26)(27-15)(27-13)}}{13}\normalsize = 10.3615128}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 26, 15 и 13 равна 8.97997773
Высота треугольника опущенная с вершины A на сторону BC со сторонами 26, 15 и 13 равна 5.18075638
Высота треугольника опущенная с вершины C на сторону AB со сторонами 26, 15 и 13 равна 10.3615128
Ссылка на результат
?n1=26&n2=15&n3=13
Найти высоту треугольника со сторонами 109, 109 и 27
Найти высоту треугольника со сторонами 123, 109 и 16
Найти высоту треугольника со сторонами 57, 50 и 42
Найти высоту треугольника со сторонами 133, 120 и 53
Найти высоту треугольника со сторонами 47, 47 и 42
Найти высоту треугольника со сторонами 111, 98 и 54
Найти высоту треугольника со сторонами 123, 109 и 16
Найти высоту треугольника со сторонами 57, 50 и 42
Найти высоту треугольника со сторонами 133, 120 и 53
Найти высоту треугольника со сторонами 47, 47 и 42
Найти высоту треугольника со сторонами 111, 98 и 54