Рассчитать высоту треугольника со сторонами 26, 24 и 3

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{26 + 24 + 3}{2}} \normalsize = 26.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{26.5(26.5-26)(26.5-24)(26.5-3)}}{24}\normalsize = 2.32504107}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{26.5(26.5-26)(26.5-24)(26.5-3)}}{26}\normalsize = 2.14619176}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{26.5(26.5-26)(26.5-24)(26.5-3)}}{3}\normalsize = 18.6003286}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 26, 24 и 3 равна 2.32504107
Высота треугольника опущенная с вершины A на сторону BC со сторонами 26, 24 и 3 равна 2.14619176
Высота треугольника опущенная с вершины C на сторону AB со сторонами 26, 24 и 3 равна 18.6003286
Ссылка на результат
?n1=26&n2=24&n3=3