Рассчитать высоту треугольника со сторонами 29, 18 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{29 + 18 + 12}{2}} \normalsize = 29.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{29.5(29.5-29)(29.5-18)(29.5-12)}}{18}\normalsize = 6.05370767}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{29.5(29.5-29)(29.5-18)(29.5-12)}}{29}\normalsize = 3.75747373}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{29.5(29.5-29)(29.5-18)(29.5-12)}}{12}\normalsize = 9.0805615}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 29, 18 и 12 равна 6.05370767
Высота треугольника опущенная с вершины A на сторону BC со сторонами 29, 18 и 12 равна 3.75747373
Высота треугольника опущенная с вершины C на сторону AB со сторонами 29, 18 и 12 равна 9.0805615
Ссылка на результат
?n1=29&n2=18&n3=12
Найти высоту треугольника со сторонами 62, 60 и 17
Найти высоту треугольника со сторонами 146, 80 и 71
Найти высоту треугольника со сторонами 125, 102 и 97
Найти высоту треугольника со сторонами 110, 107 и 26
Найти высоту треугольника со сторонами 90, 74 и 64
Найти высоту треугольника со сторонами 145, 134 и 18
Найти высоту треугольника со сторонами 146, 80 и 71
Найти высоту треугольника со сторонами 125, 102 и 97
Найти высоту треугольника со сторонами 110, 107 и 26
Найти высоту треугольника со сторонами 90, 74 и 64
Найти высоту треугольника со сторонами 145, 134 и 18