Рассчитать высоту треугольника со сторонами 32, 30 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{32 + 30 + 24}{2}} \normalsize = 43}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43(43-32)(43-30)(43-24)}}{30}\normalsize = 22.7870333}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43(43-32)(43-30)(43-24)}}{32}\normalsize = 21.3628438}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43(43-32)(43-30)(43-24)}}{24}\normalsize = 28.4837917}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 32, 30 и 24 равна 22.7870333
Высота треугольника опущенная с вершины A на сторону BC со сторонами 32, 30 и 24 равна 21.3628438
Высота треугольника опущенная с вершины C на сторону AB со сторонами 32, 30 и 24 равна 28.4837917
Ссылка на результат
?n1=32&n2=30&n3=24
Найти высоту треугольника со сторонами 75, 71 и 68
Найти высоту треугольника со сторонами 80, 77 и 47
Найти высоту треугольника со сторонами 130, 94 и 83
Найти высоту треугольника со сторонами 58, 40 и 27
Найти высоту треугольника со сторонами 129, 94 и 36
Найти высоту треугольника со сторонами 109, 108 и 62
Найти высоту треугольника со сторонами 80, 77 и 47
Найти высоту треугольника со сторонами 130, 94 и 83
Найти высоту треугольника со сторонами 58, 40 и 27
Найти высоту треугольника со сторонами 129, 94 и 36
Найти высоту треугольника со сторонами 109, 108 и 62