Рассчитать высоту треугольника со сторонами 33, 30 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{33 + 30 + 16}{2}} \normalsize = 39.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{39.5(39.5-33)(39.5-30)(39.5-16)}}{30}\normalsize = 15.9609854}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{39.5(39.5-33)(39.5-30)(39.5-16)}}{33}\normalsize = 14.5099867}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{39.5(39.5-33)(39.5-30)(39.5-16)}}{16}\normalsize = 29.9268477}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 33, 30 и 16 равна 15.9609854
Высота треугольника опущенная с вершины A на сторону BC со сторонами 33, 30 и 16 равна 14.5099867
Высота треугольника опущенная с вершины C на сторону AB со сторонами 33, 30 и 16 равна 29.9268477
Ссылка на результат
?n1=33&n2=30&n3=16
Найти высоту треугольника со сторонами 61, 60 и 19
Найти высоту треугольника со сторонами 142, 108 и 90
Найти высоту треугольника со сторонами 101, 85 и 32
Найти высоту треугольника со сторонами 141, 138 и 24
Найти высоту треугольника со сторонами 96, 71 и 35
Найти высоту треугольника со сторонами 91, 74 и 74
Найти высоту треугольника со сторонами 142, 108 и 90
Найти высоту треугольника со сторонами 101, 85 и 32
Найти высоту треугольника со сторонами 141, 138 и 24
Найти высоту треугольника со сторонами 96, 71 и 35
Найти высоту треугольника со сторонами 91, 74 и 74