Рассчитать высоту треугольника со сторонами 36, 32 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{36 + 32 + 30}{2}} \normalsize = 49}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{49(49-36)(49-32)(49-30)}}{32}\normalsize = 28.349865}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{49(49-36)(49-32)(49-30)}}{36}\normalsize = 25.19988}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{49(49-36)(49-32)(49-30)}}{30}\normalsize = 30.239856}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 36, 32 и 30 равна 28.349865
Высота треугольника опущенная с вершины A на сторону BC со сторонами 36, 32 и 30 равна 25.19988
Высота треугольника опущенная с вершины C на сторону AB со сторонами 36, 32 и 30 равна 30.239856
Ссылка на результат
?n1=36&n2=32&n3=30
Найти высоту треугольника со сторонами 142, 140 и 88
Найти высоту треугольника со сторонами 133, 112 и 60
Найти высоту треугольника со сторонами 119, 100 и 22
Найти высоту треугольника со сторонами 74, 71 и 22
Найти высоту треугольника со сторонами 138, 99 и 74
Найти высоту треугольника со сторонами 112, 112 и 51
Найти высоту треугольника со сторонами 133, 112 и 60
Найти высоту треугольника со сторонами 119, 100 и 22
Найти высоту треугольника со сторонами 74, 71 и 22
Найти высоту треугольника со сторонами 138, 99 и 74
Найти высоту треугольника со сторонами 112, 112 и 51