Рассчитать высоту треугольника со сторонами 37, 31 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{37 + 31 + 8}{2}} \normalsize = 38}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{38(38-37)(38-31)(38-8)}}{31}\normalsize = 5.76328037}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{38(38-37)(38-31)(38-8)}}{37}\normalsize = 4.82869436}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{38(38-37)(38-31)(38-8)}}{8}\normalsize = 22.3327114}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 37, 31 и 8 равна 5.76328037
Высота треугольника опущенная с вершины A на сторону BC со сторонами 37, 31 и 8 равна 4.82869436
Высота треугольника опущенная с вершины C на сторону AB со сторонами 37, 31 и 8 равна 22.3327114
Ссылка на результат
?n1=37&n2=31&n3=8
Найти высоту треугольника со сторонами 101, 76 и 49
Найти высоту треугольника со сторонами 121, 114 и 89
Найти высоту треугольника со сторонами 124, 112 и 44
Найти высоту треугольника со сторонами 54, 50 и 17
Найти высоту треугольника со сторонами 111, 110 и 95
Найти высоту треугольника со сторонами 20, 17 и 6
Найти высоту треугольника со сторонами 121, 114 и 89
Найти высоту треугольника со сторонами 124, 112 и 44
Найти высоту треугольника со сторонами 54, 50 и 17
Найти высоту треугольника со сторонами 111, 110 и 95
Найти высоту треугольника со сторонами 20, 17 и 6