Рассчитать высоту треугольника со сторонами 37, 36 и 14

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{37 + 36 + 14}{2}} \normalsize = 43.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{43.5(43.5-37)(43.5-36)(43.5-14)}}{36}\normalsize = 13.8953804}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{43.5(43.5-37)(43.5-36)(43.5-14)}}{37}\normalsize = 13.5198296}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{43.5(43.5-37)(43.5-36)(43.5-14)}}{14}\normalsize = 35.7309782}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 37, 36 и 14 равна 13.8953804
Высота треугольника опущенная с вершины A на сторону BC со сторонами 37, 36 и 14 равна 13.5198296
Высота треугольника опущенная с вершины C на сторону AB со сторонами 37, 36 и 14 равна 35.7309782
Ссылка на результат
?n1=37&n2=36&n3=14