Рассчитать высоту треугольника со сторонами 38, 36 и 16
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{38 + 36 + 16}{2}} \normalsize = 45}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{45(45-38)(45-36)(45-16)}}{36}\normalsize = 15.9295323}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{45(45-38)(45-36)(45-16)}}{38}\normalsize = 15.0911359}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{45(45-38)(45-36)(45-16)}}{16}\normalsize = 35.8414477}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 38, 36 и 16 равна 15.9295323
Высота треугольника опущенная с вершины A на сторону BC со сторонами 38, 36 и 16 равна 15.0911359
Высота треугольника опущенная с вершины C на сторону AB со сторонами 38, 36 и 16 равна 35.8414477
Ссылка на результат
?n1=38&n2=36&n3=16
Найти высоту треугольника со сторонами 51, 50 и 29
Найти высоту треугольника со сторонами 142, 105 и 95
Найти высоту треугольника со сторонами 71, 68 и 37
Найти высоту треугольника со сторонами 131, 112 и 36
Найти высоту треугольника со сторонами 40, 34 и 26
Найти высоту треугольника со сторонами 109, 95 и 71
Найти высоту треугольника со сторонами 142, 105 и 95
Найти высоту треугольника со сторонами 71, 68 и 37
Найти высоту треугольника со сторонами 131, 112 и 36
Найти высоту треугольника со сторонами 40, 34 и 26
Найти высоту треугольника со сторонами 109, 95 и 71