Рассчитать высоту треугольника со сторонами 39, 25 и 15
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 25 + 15}{2}} \normalsize = 39.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{39.5(39.5-39)(39.5-25)(39.5-15)}}{25}\normalsize = 6.70101485}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{39.5(39.5-39)(39.5-25)(39.5-15)}}{39}\normalsize = 4.29552234}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{39.5(39.5-39)(39.5-25)(39.5-15)}}{15}\normalsize = 11.1683581}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 25 и 15 равна 6.70101485
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 25 и 15 равна 4.29552234
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 25 и 15 равна 11.1683581
Ссылка на результат
?n1=39&n2=25&n3=15
Найти высоту треугольника со сторонами 130, 99 и 68
Найти высоту треугольника со сторонами 146, 132 и 33
Найти высоту треугольника со сторонами 81, 78 и 43
Найти высоту треугольника со сторонами 114, 92 и 46
Найти высоту треугольника со сторонами 51, 46 и 25
Найти высоту треугольника со сторонами 94, 83 и 57
Найти высоту треугольника со сторонами 146, 132 и 33
Найти высоту треугольника со сторонами 81, 78 и 43
Найти высоту треугольника со сторонами 114, 92 и 46
Найти высоту треугольника со сторонами 51, 46 и 25
Найти высоту треугольника со сторонами 94, 83 и 57