Рассчитать высоту треугольника со сторонами 39, 32 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 32 + 21}{2}} \normalsize = 46}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{46(46-39)(46-32)(46-21)}}{32}\normalsize = 20.9817629}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{46(46-39)(46-32)(46-21)}}{39}\normalsize = 17.2158055}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{46(46-39)(46-32)(46-21)}}{21}\normalsize = 31.9722102}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 32 и 21 равна 20.9817629
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 32 и 21 равна 17.2158055
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 32 и 21 равна 31.9722102
Ссылка на результат
?n1=39&n2=32&n3=21
Найти высоту треугольника со сторонами 115, 84 и 38
Найти высоту треугольника со сторонами 141, 90 и 70
Найти высоту треугольника со сторонами 115, 83 и 43
Найти высоту треугольника со сторонами 144, 143 и 109
Найти высоту треугольника со сторонами 98, 68 и 50
Найти высоту треугольника со сторонами 127, 116 и 58
Найти высоту треугольника со сторонами 141, 90 и 70
Найти высоту треугольника со сторонами 115, 83 и 43
Найти высоту треугольника со сторонами 144, 143 и 109
Найти высоту треугольника со сторонами 98, 68 и 50
Найти высоту треугольника со сторонами 127, 116 и 58