Рассчитать высоту треугольника со сторонами 39, 35 и 34

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{39 + 35 + 34}{2}} \normalsize = 54}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54(54-39)(54-35)(54-34)}}{35}\normalsize = 31.7027006}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54(54-39)(54-35)(54-34)}}{39}\normalsize = 28.4511416}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54(54-39)(54-35)(54-34)}}{34}\normalsize = 32.635133}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 39, 35 и 34 равна 31.7027006
Высота треугольника опущенная с вершины A на сторону BC со сторонами 39, 35 и 34 равна 28.4511416
Высота треугольника опущенная с вершины C на сторону AB со сторонами 39, 35 и 34 равна 32.635133
Ссылка на результат
?n1=39&n2=35&n3=34