Рассчитать высоту треугольника со сторонами 40, 35 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{40 + 35 + 30}{2}} \normalsize = 52.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52.5(52.5-40)(52.5-35)(52.5-30)}}{35}\normalsize = 29.0473751}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52.5(52.5-40)(52.5-35)(52.5-30)}}{40}\normalsize = 25.4164532}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52.5(52.5-40)(52.5-35)(52.5-30)}}{30}\normalsize = 33.8886043}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 40, 35 и 30 равна 29.0473751
Высота треугольника опущенная с вершины A на сторону BC со сторонами 40, 35 и 30 равна 25.4164532
Высота треугольника опущенная с вершины C на сторону AB со сторонами 40, 35 и 30 равна 33.8886043
Ссылка на результат
?n1=40&n2=35&n3=30
Найти высоту треугольника со сторонами 135, 116 и 105
Найти высоту треугольника со сторонами 146, 119 и 59
Найти высоту треугольника со сторонами 145, 144 и 110
Найти высоту треугольника со сторонами 76, 57 и 53
Найти высоту треугольника со сторонами 149, 125 и 63
Найти высоту треугольника со сторонами 73, 45 и 41
Найти высоту треугольника со сторонами 146, 119 и 59
Найти высоту треугольника со сторонами 145, 144 и 110
Найти высоту треугольника со сторонами 76, 57 и 53
Найти высоту треугольника со сторонами 149, 125 и 63
Найти высоту треугольника со сторонами 73, 45 и 41