Рассчитать высоту треугольника со сторонами 41, 28 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{41 + 28 + 25}{2}} \normalsize = 47}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{47(47-41)(47-28)(47-25)}}{28}\normalsize = 24.5236246}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{47(47-41)(47-28)(47-25)}}{41}\normalsize = 16.7478412}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{47(47-41)(47-28)(47-25)}}{25}\normalsize = 27.4664595}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 41, 28 и 25 равна 24.5236246
Высота треугольника опущенная с вершины A на сторону BC со сторонами 41, 28 и 25 равна 16.7478412
Высота треугольника опущенная с вершины C на сторону AB со сторонами 41, 28 и 25 равна 27.4664595
Ссылка на результат
?n1=41&n2=28&n3=25
Найти высоту треугольника со сторонами 132, 109 и 41
Найти высоту треугольника со сторонами 110, 78 и 44
Найти высоту треугольника со сторонами 101, 94 и 91
Найти высоту треугольника со сторонами 45, 29 и 24
Найти высоту треугольника со сторонами 68, 54 и 44
Найти высоту треугольника со сторонами 148, 117 и 97
Найти высоту треугольника со сторонами 110, 78 и 44
Найти высоту треугольника со сторонами 101, 94 и 91
Найти высоту треугольника со сторонами 45, 29 и 24
Найти высоту треугольника со сторонами 68, 54 и 44
Найти высоту треугольника со сторонами 148, 117 и 97