Рассчитать высоту треугольника со сторонами 42, 40 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{42 + 40 + 30}{2}} \normalsize = 56}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{56(56-42)(56-40)(56-30)}}{40}\normalsize = 28.5545093}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{56(56-42)(56-40)(56-30)}}{42}\normalsize = 27.1947707}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{56(56-42)(56-40)(56-30)}}{30}\normalsize = 38.072679}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 42, 40 и 30 равна 28.5545093
Высота треугольника опущенная с вершины A на сторону BC со сторонами 42, 40 и 30 равна 27.1947707
Высота треугольника опущенная с вершины C на сторону AB со сторонами 42, 40 и 30 равна 38.072679
Ссылка на результат
?n1=42&n2=40&n3=30
Найти высоту треугольника со сторонами 59, 51 и 12
Найти высоту треугольника со сторонами 135, 132 и 5
Найти высоту треугольника со сторонами 136, 97 и 67
Найти высоту треугольника со сторонами 94, 86 и 78
Найти высоту треугольника со сторонами 136, 125 и 57
Найти высоту треугольника со сторонами 117, 113 и 72
Найти высоту треугольника со сторонами 135, 132 и 5
Найти высоту треугольника со сторонами 136, 97 и 67
Найти высоту треугольника со сторонами 94, 86 и 78
Найти высоту треугольника со сторонами 136, 125 и 57
Найти высоту треугольника со сторонами 117, 113 и 72