Рассчитать высоту треугольника со сторонами 44, 36 и 26
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{44 + 36 + 26}{2}} \normalsize = 53}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{53(53-44)(53-36)(53-26)}}{36}\normalsize = 25.9951919}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{53(53-44)(53-36)(53-26)}}{44}\normalsize = 21.2687933}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{53(53-44)(53-36)(53-26)}}{26}\normalsize = 35.9933426}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 44, 36 и 26 равна 25.9951919
Высота треугольника опущенная с вершины A на сторону BC со сторонами 44, 36 и 26 равна 21.2687933
Высота треугольника опущенная с вершины C на сторону AB со сторонами 44, 36 и 26 равна 35.9933426
Ссылка на результат
?n1=44&n2=36&n3=26
Найти высоту треугольника со сторонами 108, 88 и 30
Найти высоту треугольника со сторонами 91, 76 и 44
Найти высоту треугольника со сторонами 84, 65 и 34
Найти высоту треугольника со сторонами 102, 100 и 56
Найти высоту треугольника со сторонами 135, 82 и 60
Найти высоту треугольника со сторонами 123, 93 и 38
Найти высоту треугольника со сторонами 91, 76 и 44
Найти высоту треугольника со сторонами 84, 65 и 34
Найти высоту треугольника со сторонами 102, 100 и 56
Найти высоту треугольника со сторонами 135, 82 и 60
Найти высоту треугольника со сторонами 123, 93 и 38