Рассчитать высоту треугольника со сторонами 44, 40 и 24
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{44 + 40 + 24}{2}} \normalsize = 54}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54(54-44)(54-40)(54-24)}}{40}\normalsize = 23.8117618}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54(54-44)(54-40)(54-24)}}{44}\normalsize = 21.6470562}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54(54-44)(54-40)(54-24)}}{24}\normalsize = 39.6862697}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 44, 40 и 24 равна 23.8117618
Высота треугольника опущенная с вершины A на сторону BC со сторонами 44, 40 и 24 равна 21.6470562
Высота треугольника опущенная с вершины C на сторону AB со сторонами 44, 40 и 24 равна 39.6862697
Ссылка на результат
?n1=44&n2=40&n3=24
Найти высоту треугольника со сторонами 96, 83 и 36
Найти высоту треугольника со сторонами 116, 106 и 53
Найти высоту треугольника со сторонами 147, 134 и 26
Найти высоту треугольника со сторонами 149, 86 и 85
Найти высоту треугольника со сторонами 68, 55 и 48
Найти высоту треугольника со сторонами 36, 36 и 27
Найти высоту треугольника со сторонами 116, 106 и 53
Найти высоту треугольника со сторонами 147, 134 и 26
Найти высоту треугольника со сторонами 149, 86 и 85
Найти высоту треугольника со сторонами 68, 55 и 48
Найти высоту треугольника со сторонами 36, 36 и 27