Рассчитать высоту треугольника со сторонами 44, 43 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{44 + 43 + 34}{2}} \normalsize = 60.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{60.5(60.5-44)(60.5-43)(60.5-34)}}{43}\normalsize = 31.646316}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{60.5(60.5-44)(60.5-43)(60.5-34)}}{44}\normalsize = 30.9270816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{60.5(60.5-44)(60.5-43)(60.5-34)}}{34}\normalsize = 40.023282}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 44, 43 и 34 равна 31.646316
Высота треугольника опущенная с вершины A на сторону BC со сторонами 44, 43 и 34 равна 30.9270816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 44, 43 и 34 равна 40.023282
Ссылка на результат
?n1=44&n2=43&n3=34
Найти высоту треугольника со сторонами 107, 105 и 79
Найти высоту треугольника со сторонами 133, 126 и 17
Найти высоту треугольника со сторонами 138, 82 и 60
Найти высоту треугольника со сторонами 141, 126 и 71
Найти высоту треугольника со сторонами 139, 108 и 68
Найти высоту треугольника со сторонами 133, 127 и 109
Найти высоту треугольника со сторонами 133, 126 и 17
Найти высоту треугольника со сторонами 138, 82 и 60
Найти высоту треугольника со сторонами 141, 126 и 71
Найти высоту треугольника со сторонами 139, 108 и 68
Найти высоту треугольника со сторонами 133, 127 и 109