Рассчитать высоту треугольника со сторонами 46, 30 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{46 + 30 + 25}{2}} \normalsize = 50.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50.5(50.5-46)(50.5-30)(50.5-25)}}{30}\normalsize = 22.977761}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50.5(50.5-46)(50.5-30)(50.5-25)}}{46}\normalsize = 14.9854963}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50.5(50.5-46)(50.5-30)(50.5-25)}}{25}\normalsize = 27.5733132}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 46, 30 и 25 равна 22.977761
Высота треугольника опущенная с вершины A на сторону BC со сторонами 46, 30 и 25 равна 14.9854963
Высота треугольника опущенная с вершины C на сторону AB со сторонами 46, 30 и 25 равна 27.5733132
Ссылка на результат
?n1=46&n2=30&n3=25
Найти высоту треугольника со сторонами 127, 103 и 42
Найти высоту треугольника со сторонами 128, 110 и 34
Найти высоту треугольника со сторонами 103, 80 и 59
Найти высоту треугольника со сторонами 127, 103 и 50
Найти высоту треугольника со сторонами 91, 69 и 38
Найти высоту треугольника со сторонами 132, 104 и 98
Найти высоту треугольника со сторонами 128, 110 и 34
Найти высоту треугольника со сторонами 103, 80 и 59
Найти высоту треугольника со сторонами 127, 103 и 50
Найти высоту треугольника со сторонами 91, 69 и 38
Найти высоту треугольника со сторонами 132, 104 и 98