Рассчитать высоту треугольника со сторонами 47, 39 и 31

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{47 + 39 + 31}{2}} \normalsize = 58.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58.5(58.5-47)(58.5-39)(58.5-31)}}{39}\normalsize = 30.8017857}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58.5(58.5-47)(58.5-39)(58.5-31)}}{47}\normalsize = 25.5589285}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58.5(58.5-47)(58.5-39)(58.5-31)}}{31}\normalsize = 38.7506336}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 47, 39 и 31 равна 30.8017857
Высота треугольника опущенная с вершины A на сторону BC со сторонами 47, 39 и 31 равна 25.5589285
Высота треугольника опущенная с вершины C на сторону AB со сторонами 47, 39 и 31 равна 38.7506336
Ссылка на результат
?n1=47&n2=39&n3=31