Рассчитать высоту треугольника со сторонами 48, 28 и 25
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 28 + 25}{2}} \normalsize = 50.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50.5(50.5-48)(50.5-28)(50.5-25)}}{28}\normalsize = 19.2242324}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50.5(50.5-48)(50.5-28)(50.5-25)}}{48}\normalsize = 11.2141355}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50.5(50.5-48)(50.5-28)(50.5-25)}}{25}\normalsize = 21.5311402}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 28 и 25 равна 19.2242324
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 28 и 25 равна 11.2141355
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 28 и 25 равна 21.5311402
Ссылка на результат
?n1=48&n2=28&n3=25
Найти высоту треугольника со сторонами 142, 126 и 58
Найти высоту треугольника со сторонами 144, 117 и 78
Найти высоту треугольника со сторонами 126, 114 и 69
Найти высоту треугольника со сторонами 104, 82 и 35
Найти высоту треугольника со сторонами 105, 97 и 45
Найти высоту треугольника со сторонами 55, 55 и 16
Найти высоту треугольника со сторонами 144, 117 и 78
Найти высоту треугольника со сторонами 126, 114 и 69
Найти высоту треугольника со сторонами 104, 82 и 35
Найти высоту треугольника со сторонами 105, 97 и 45
Найти высоту треугольника со сторонами 55, 55 и 16