Рассчитать высоту треугольника со сторонами 48, 38 и 36
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 38 + 36}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-48)(61-38)(61-36)}}{38}\normalsize = 35.5399584}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-48)(61-38)(61-36)}}{48}\normalsize = 28.1358004}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-48)(61-38)(61-36)}}{36}\normalsize = 37.5144005}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 38 и 36 равна 35.5399584
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 38 и 36 равна 28.1358004
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 38 и 36 равна 37.5144005
Ссылка на результат
?n1=48&n2=38&n3=36
Найти высоту треугольника со сторонами 73, 61 и 47
Найти высоту треугольника со сторонами 120, 113 и 95
Найти высоту треугольника со сторонами 63, 59 и 20
Найти высоту треугольника со сторонами 119, 111 и 90
Найти высоту треугольника со сторонами 150, 117 и 92
Найти высоту треугольника со сторонами 129, 106 и 41
Найти высоту треугольника со сторонами 120, 113 и 95
Найти высоту треугольника со сторонами 63, 59 и 20
Найти высоту треугольника со сторонами 119, 111 и 90
Найти высоту треугольника со сторонами 150, 117 и 92
Найти высоту треугольника со сторонами 129, 106 и 41