Рассчитать высоту треугольника со сторонами 48, 41 и 35
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{48 + 41 + 35}{2}} \normalsize = 62}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{62(62-48)(62-41)(62-35)}}{41}\normalsize = 34.221381}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{62(62-48)(62-41)(62-35)}}{48}\normalsize = 29.2307629}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{62(62-48)(62-41)(62-35)}}{35}\normalsize = 40.0879034}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 48, 41 и 35 равна 34.221381
Высота треугольника опущенная с вершины A на сторону BC со сторонами 48, 41 и 35 равна 29.2307629
Высота треугольника опущенная с вершины C на сторону AB со сторонами 48, 41 и 35 равна 40.0879034
Ссылка на результат
?n1=48&n2=41&n3=35
Найти высоту треугольника со сторонами 142, 140 и 115
Найти высоту треугольника со сторонами 48, 39 и 18
Найти высоту треугольника со сторонами 62, 53 и 19
Найти высоту треугольника со сторонами 106, 89 и 78
Найти высоту треугольника со сторонами 120, 105 и 41
Найти высоту треугольника со сторонами 98, 92 и 90
Найти высоту треугольника со сторонами 48, 39 и 18
Найти высоту треугольника со сторонами 62, 53 и 19
Найти высоту треугольника со сторонами 106, 89 и 78
Найти высоту треугольника со сторонами 120, 105 и 41
Найти высоту треугольника со сторонами 98, 92 и 90