Рассчитать высоту треугольника со сторонами 49, 37 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 37 + 30}{2}} \normalsize = 58}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58(58-49)(58-37)(58-30)}}{37}\normalsize = 29.9469216}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58(58-49)(58-37)(58-30)}}{49}\normalsize = 22.6129816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58(58-49)(58-37)(58-30)}}{30}\normalsize = 36.9345367}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 37 и 30 равна 29.9469216
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 37 и 30 равна 22.6129816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 37 и 30 равна 36.9345367
Ссылка на результат
?n1=49&n2=37&n3=30
Найти высоту треугольника со сторонами 111, 96 и 23
Найти высоту треугольника со сторонами 114, 86 и 83
Найти высоту треугольника со сторонами 110, 92 и 21
Найти высоту треугольника со сторонами 99, 88 и 54
Найти высоту треугольника со сторонами 119, 99 и 53
Найти высоту треугольника со сторонами 69, 68 и 16
Найти высоту треугольника со сторонами 114, 86 и 83
Найти высоту треугольника со сторонами 110, 92 и 21
Найти высоту треугольника со сторонами 99, 88 и 54
Найти высоту треугольника со сторонами 119, 99 и 53
Найти высоту треугольника со сторонами 69, 68 и 16