Рассчитать высоту треугольника со сторонами 49, 37 и 30
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 37 + 30}{2}} \normalsize = 58}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58(58-49)(58-37)(58-30)}}{37}\normalsize = 29.9469216}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58(58-49)(58-37)(58-30)}}{49}\normalsize = 22.6129816}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58(58-49)(58-37)(58-30)}}{30}\normalsize = 36.9345367}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 37 и 30 равна 29.9469216
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 37 и 30 равна 22.6129816
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 37 и 30 равна 36.9345367
Ссылка на результат
?n1=49&n2=37&n3=30
Найти высоту треугольника со сторонами 148, 123 и 81
Найти высоту треугольника со сторонами 145, 118 и 57
Найти высоту треугольника со сторонами 95, 85 и 49
Найти высоту треугольника со сторонами 126, 79 и 50
Найти высоту треугольника со сторонами 122, 105 и 99
Найти высоту треугольника со сторонами 147, 104 и 45
Найти высоту треугольника со сторонами 145, 118 и 57
Найти высоту треугольника со сторонами 95, 85 и 49
Найти высоту треугольника со сторонами 126, 79 и 50
Найти высоту треугольника со сторонами 122, 105 и 99
Найти высоту треугольника со сторонами 147, 104 и 45