Рассчитать высоту треугольника со сторонами 49, 38 и 14
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 38 + 14}{2}} \normalsize = 50.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{50.5(50.5-49)(50.5-38)(50.5-14)}}{38}\normalsize = 9.78451169}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{50.5(50.5-49)(50.5-38)(50.5-14)}}{49}\normalsize = 7.58798866}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{50.5(50.5-49)(50.5-38)(50.5-14)}}{14}\normalsize = 26.5579603}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 38 и 14 равна 9.78451169
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 38 и 14 равна 7.58798866
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 38 и 14 равна 26.5579603
Ссылка на результат
?n1=49&n2=38&n3=14
Найти высоту треугольника со сторонами 127, 85 и 48
Найти высоту треугольника со сторонами 143, 105 и 42
Найти высоту треугольника со сторонами 133, 119 и 38
Найти высоту треугольника со сторонами 116, 114 и 71
Найти высоту треугольника со сторонами 85, 74 и 61
Найти высоту треугольника со сторонами 43, 43 и 10
Найти высоту треугольника со сторонами 143, 105 и 42
Найти высоту треугольника со сторонами 133, 119 и 38
Найти высоту треугольника со сторонами 116, 114 и 71
Найти высоту треугольника со сторонами 85, 74 и 61
Найти высоту треугольника со сторонами 43, 43 и 10