Рассчитать высоту треугольника со сторонами 49, 47 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{49 + 47 + 20}{2}} \normalsize = 58}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{58(58-49)(58-47)(58-20)}}{47}\normalsize = 19.8772148}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{58(58-49)(58-47)(58-20)}}{49}\normalsize = 19.0658999}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{58(58-49)(58-47)(58-20)}}{20}\normalsize = 46.7114547}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 49, 47 и 20 равна 19.8772148
Высота треугольника опущенная с вершины A на сторону BC со сторонами 49, 47 и 20 равна 19.0658999
Высота треугольника опущенная с вершины C на сторону AB со сторонами 49, 47 и 20 равна 46.7114547
Ссылка на результат
?n1=49&n2=47&n3=20
Найти высоту треугольника со сторонами 82, 75 и 29
Найти высоту треугольника со сторонами 124, 106 и 104
Найти высоту треугольника со сторонами 96, 96 и 32
Найти высоту треугольника со сторонами 138, 111 и 87
Найти высоту треугольника со сторонами 142, 99 и 83
Найти высоту треугольника со сторонами 144, 119 и 116
Найти высоту треугольника со сторонами 124, 106 и 104
Найти высоту треугольника со сторонами 96, 96 и 32
Найти высоту треугольника со сторонами 138, 111 и 87
Найти высоту треугольника со сторонами 142, 99 и 83
Найти высоту треугольника со сторонами 144, 119 и 116