Рассчитать высоту треугольника со сторонами 50, 48 и 11

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 48 + 11}{2}} \normalsize = 54.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{54.5(54.5-50)(54.5-48)(54.5-11)}}{48}\normalsize = 10.9722217}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{54.5(54.5-50)(54.5-48)(54.5-11)}}{50}\normalsize = 10.5333328}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{54.5(54.5-50)(54.5-48)(54.5-11)}}{11}\normalsize = 47.8787855}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 48 и 11 равна 10.9722217
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 48 и 11 равна 10.5333328
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 48 и 11 равна 47.8787855
Ссылка на результат
?n1=50&n2=48&n3=11