Рассчитать высоту треугольника со сторонами 50, 49 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 49 + 20}{2}} \normalsize = 59.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{59.5(59.5-50)(59.5-49)(59.5-20)}}{49}\normalsize = 19.762751}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{59.5(59.5-50)(59.5-49)(59.5-20)}}{50}\normalsize = 19.367496}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{59.5(59.5-50)(59.5-49)(59.5-20)}}{20}\normalsize = 48.4187399}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 49 и 20 равна 19.762751
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 49 и 20 равна 19.367496
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 49 и 20 равна 48.4187399
Ссылка на результат
?n1=50&n2=49&n3=20
Найти высоту треугольника со сторонами 136, 120 и 71
Найти высоту треугольника со сторонами 100, 85 и 22
Найти высоту треугольника со сторонами 90, 64 и 32
Найти высоту треугольника со сторонами 108, 104 и 44
Найти высоту треугольника со сторонами 135, 124 и 91
Найти высоту треугольника со сторонами 142, 136 и 113
Найти высоту треугольника со сторонами 100, 85 и 22
Найти высоту треугольника со сторонами 90, 64 и 32
Найти высоту треугольника со сторонами 108, 104 и 44
Найти высоту треугольника со сторонами 135, 124 и 91
Найти высоту треугольника со сторонами 142, 136 и 113