Рассчитать высоту треугольника со сторонами 50, 50 и 38
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{50 + 50 + 38}{2}} \normalsize = 69}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{69(69-50)(69-50)(69-38)}}{50}\normalsize = 35.1494865}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{69(69-50)(69-50)(69-38)}}{50}\normalsize = 35.1494865}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{69(69-50)(69-50)(69-38)}}{38}\normalsize = 46.2493243}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 50, 50 и 38 равна 35.1494865
Высота треугольника опущенная с вершины A на сторону BC со сторонами 50, 50 и 38 равна 35.1494865
Высота треугольника опущенная с вершины C на сторону AB со сторонами 50, 50 и 38 равна 46.2493243
Ссылка на результат
?n1=50&n2=50&n3=38
Найти высоту треугольника со сторонами 117, 104 и 62
Найти высоту треугольника со сторонами 131, 105 и 49
Найти высоту треугольника со сторонами 145, 134 и 72
Найти высоту треугольника со сторонами 128, 99 и 52
Найти высоту треугольника со сторонами 140, 121 и 75
Найти высоту треугольника со сторонами 113, 111 и 33
Найти высоту треугольника со сторонами 131, 105 и 49
Найти высоту треугольника со сторонами 145, 134 и 72
Найти высоту треугольника со сторонами 128, 99 и 52
Найти высоту треугольника со сторонами 140, 121 и 75
Найти высоту треугольника со сторонами 113, 111 и 33