Рассчитать высоту треугольника со сторонами 51, 39 и 15

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{51 + 39 + 15}{2}} \normalsize = 52.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{52.5(52.5-51)(52.5-39)(52.5-15)}}{39}\normalsize = 10.2393689}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{52.5(52.5-51)(52.5-39)(52.5-15)}}{51}\normalsize = 7.8301056}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{52.5(52.5-51)(52.5-39)(52.5-15)}}{15}\normalsize = 26.622359}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 51, 39 и 15 равна 10.2393689
Высота треугольника опущенная с вершины A на сторону BC со сторонами 51, 39 и 15 равна 7.8301056
Высота треугольника опущенная с вершины C на сторону AB со сторонами 51, 39 и 15 равна 26.622359
Ссылка на результат
?n1=51&n2=39&n3=15