Рассчитать высоту треугольника со сторонами 52, 33 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{52 + 33 + 33}{2}} \normalsize = 59}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{59(59-52)(59-33)(59-33)}}{33}\normalsize = 32.023178}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{59(59-52)(59-33)(59-33)}}{52}\normalsize = 20.3224014}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{59(59-52)(59-33)(59-33)}}{33}\normalsize = 32.023178}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 52, 33 и 33 равна 32.023178
Высота треугольника опущенная с вершины A на сторону BC со сторонами 52, 33 и 33 равна 20.3224014
Высота треугольника опущенная с вершины C на сторону AB со сторонами 52, 33 и 33 равна 32.023178
Ссылка на результат
?n1=52&n2=33&n3=33
Найти высоту треугольника со сторонами 59, 51 и 27
Найти высоту треугольника со сторонами 109, 76 и 73
Найти высоту треугольника со сторонами 150, 130 и 102
Найти высоту треугольника со сторонами 107, 103 и 26
Найти высоту треугольника со сторонами 125, 109 и 99
Найти высоту треугольника со сторонами 90, 72 и 70
Найти высоту треугольника со сторонами 109, 76 и 73
Найти высоту треугольника со сторонами 150, 130 и 102
Найти высоту треугольника со сторонами 107, 103 и 26
Найти высоту треугольника со сторонами 125, 109 и 99
Найти высоту треугольника со сторонами 90, 72 и 70