Рассчитать высоту треугольника со сторонами 53, 45 и 24

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{53 + 45 + 24}{2}} \normalsize = 61}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{61(61-53)(61-45)(61-24)}}{45}\normalsize = 23.8884651}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{61(61-53)(61-45)(61-24)}}{53}\normalsize = 20.2826591}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{61(61-53)(61-45)(61-24)}}{24}\normalsize = 44.7908721}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 53, 45 и 24 равна 23.8884651
Высота треугольника опущенная с вершины A на сторону BC со сторонами 53, 45 и 24 равна 20.2826591
Высота треугольника опущенная с вершины C на сторону AB со сторонами 53, 45 и 24 равна 44.7908721
Ссылка на результат
?n1=53&n2=45&n3=24